
numint

Nicolás A. Ortega

December 1, 2016

1 Usage
numint is a quick program written in C that calculates the area underneath
a function using Left Rectangle, Right Rectangle, Middle-Point Rectangle,
Trapezoidal, and Simpson part integrations. The usage is simple, first define
the function you wish to integrate in the `func' function found at the end of
the `main.c' file. After doing so compile and run the program. By default
numint uses the CMake build system, therefore with CMake installed you
could run the following commands from the root directory of the project:

$ cd build/
$ cmake ..
$ make

This would generate a file, `build/numint' which is the program’s ex-
ecutable file. On UNIX systems you can run this file directly from the
command-line from the `build/' directory by running `./numint'. At
this point numint will prompt you with `Enter "min, max":', which is
asking you to enter the range in which you want to calculate the integral
(e.g. `4, 6'), these numbers may contain decimals. After this you will be
prompted `Number of parts:' which is asking for the number parts for the
range previously given should be divided into (this number cannot contain a
decimal).

If all has been done correctly then the program should print the results
of the integrations for the formula in all five methods.

2 Examples
In order make sure that the program works the way we think it does we’d
have to test it first. For these examples let’s use the integral

∫ 5
2 x3 + 4x− 2.

1



The results taken by hand for this integral in one part for all forms are as
follows:

• Left Rectangle: f(a) · (b− a) = (23 + 4 · 2− 2) · (5− 2) = 42

• Right Rectangle: f(b) · (b− a) = (53 + 4 · 5− 2) · (5− 2) = 429

• Middle-Point Rectangle: f(a+b
2
) · (b−a) = (3.53+4 · 3.5− 2) · (5− 2) =

164.625

• Trapezoid: f(a)+f(b)
2

· (b− a) = (23+4·2−2)+(53+4·5−2)
2

· (5− 2) = 235.5

• Simpson: b−a
6

· (f(a) + f(b) + 4 · f(a+b
2
)) = 5−2

6
· ((23 +4 · 2− 2) + (53 +

4 · 5− 2) + 4 · (3.53 + 4 · 3.5− 2)) = 188.25

If we run this in numint we get the following output:

Enter "min, max": 2, 5
Number of parts: 1
Left Rectangle: 42.000000
Right rectangle: 429.000000
Middle Point Rectangle: 164.625000
Trapezoidal: 235.500000
Simpson: 188.250000

As you can see you get the exact same results (with trailing zeros due to
the `double' data type).

We have now seen how numint works for integrals in one part, but we
should also test it for multiple parts. Let’s use the same integral but test
for 2 parts, which should give us slightly more accuracy. The results are as
follows:

• Left Rectangle:
2∑

i=1

f(xi) · (xi+1 − xi) = 103.3125

• Right Rectangle:
2∑

i=1

f(xi+1) · (xi+1 − xi) = 296.8125

• Middle-Point Rectangle:
2∑

i=1

f(
xi + xi+1

2
) · (xi+1 − xi) = 182.34375

• Trapezoidal:
2∑

i=1

f(xi) + f(xi+1)

2
· (xi+1 − xi) = 200.0625

2



• Simpson:
2∑

i=1

xi+1 − xi

6
· (f(xi) + f(xi+1) + 4 · f(xi + xi+1

2
)) = 188.25

If we then run this in numint we get the following output:

Enter "min, max": 2, 5
Number of parts: 2
Left Rectangle: 103.312500
Right rectangle: 296.812500
Middle Point Rectangle: 182.343750
Trapezoidal: 200.062500
Simpson: 188.250000

Again the same exact results.

3 Technical Analysis
Now let’s analyze how the code works. To begin let’s look at the function
f(x) which is defined in the `func(double x)' C function. The function is
defined as follows:

double func(double x) {
return pow(x, 3.0) + 4.0 * x - 2.0;

}

It’s a simple function that takes in `double' as a parameter and returns
the result in the form of a `double' as well. The function itself uses the
`pow()' from the C Math library which is what allows us to easily use
exponents (in this case `pow(x, 3.0)' is equivalent to x3). If you want to
change the function you’ll have to modify the `return' statement in this
function.

Later, after retrieving the `min', `max', and `parts' variables that were
prompted to the user we enter the main loop of the program for the calcula-
tions.

for(unsigned int i = 0; i < parts; ++i) {
...

}

This loop will create a variable `i' which will be useful later. This vari-
able (as stated by the loop) will increment while it is less than the `parts'
variable.

After this are the following lines:

3



double p0 = a + (i * (b - a) / parts);
double p1 = p0 + ((b - a) / parts);

Here we create two variables: `p0' and `p1'. In regards to the previ-
ous calculations done in the ‘Examples’ section, `p0' and `p1' would be
equivalent to xi and xi+1 respectively. So, let’s imagine that we’re looking
at the first part of two for this integral that goes from 2 to 5 (like in the
example). In this case, mathematically, the equation would look like this:
p0 = 2+ 0·(5−2)

2
and p1 = p0+ 5−2

2
. Now, why multiply by 0? Doesn’t the loop

start at 1? Well, in programming, luckily, we always start with 0 (remember
in the `for' loop where it said `unsigned int i = 0'?). Since this is the
first part we multiply by 0 because we want to start at 2. This is all being
setup for the calculation of the integrals with parts.

Finally comes the calculation of the integrals, which is as follows:

lRect += func(p0) * (p1 - p0);
rRect += func(p1) * (p1 - p0);
mRect += func((p0 + p1) / 2) * (p1 - p0);
trap += (func(p0) + func(p1)) / 2 * (p1 - p0);
simp += (p1 - p0) / 6 * (func(p0) + func(p1) + 4 * func((p0 + p1) / 2));

All these variables (`lRect', `rRect', etc.) have all been assigned to 0
before entering the loop. Therefore, on each of these lines the integral for a
given part of the function (where `p0' is the beginning of the part and `p1'
is the end of the part) which is then added to all the other parts because of
the `for' loop seen previously.

After this all the variables are printed to `stdout' (Standard Output)
for the user to see the results.

4 Modifications
Currently numint is limited to a pre-coded function (as previously mentioned,
this function can be modified in `func(double x)' found at the end of the
file `main.c'). Modifications to the source for this project are permitted
and encouraged, however all distributions of said changes must comply with
the project license, which is the GNU General Public License version 3.

5 License
This document is licensed under a Creative Commons Attribution-Share
Alike 4.0 International License.

4



Copyright © 2016 Nicolás A. Ortega <deathsbreed@themusicinnoise.net>

5

mailto:deathsbreed@themusicinnoise.net

	Usage
	Examples
	Technical Analysis
	License

